

CERTIFICATION

AOAC Research Institute Performance Tested MethodsSM

Certificate No. 010802

The AOAC Research Institute hereby certifies the method known as:

iQ-Check Listeria monocytogenes II Real-Time PCR

manufactured by

Corporate Location Bio-Rad Laboratories 2000 Alfred Nobel Drive Hercules, CA 94547 USA Manufacturing Location Bio-Rad Laboratories 925 Alfred Nobel Drive Hercules, CA 94547 USA

This method has been evaluated in the AOAC Research Institute *Performance Tested Methods*SM Program and found to perform as stated in the applicability of the method. This certificate indicates an AOAC Research Institute Certification Mark License Agreement has been executed which authorizes the manufacturer to display the AOAC Research Institute *Performance Tested Methods*SM certification mark on the above-mentioned method for the period below. Renewal may be granted by the Expiration Date under the rules stated in the licensing agreement.

Scott Crates

Scott Coates, Senior Director Signature for AOAC Research Institute Issue Date Expiration Date October 27, 2023 December 31, 2024

2275 Research Blvd., Suite 300, Rockville, MD 20850-3250 USA * Telephone: +1-301-924-7077 * Fax: +1-301-924-7089 Internet e-mail: <u>aoacri@aoac.org</u> * World Wide Web Site: http://www.aoac.org

AUTHORS

ORIGINAL VALIDATION: Wendy F. Lauer, Jean-Philippe Tourniaire, Caroline D. Sidi, and Asmita Patel MODIFICATION GOVVAL: Wendy F. Lauer, and Jean-Philippe Tourniaire MODIFICATION 1 JANUARY 2023: Mike Clark, Maryse Rannou, Florian Quero MODIFICATION 2 JANUARY 2023: Mike Clark

METHOD NAME

iQ-Check Listeria monocytogenes II Real-Time PCR

INDEPENDENT LABORATORY

Original Validation rtech Laboratories 1150 West County Road F Arden Hills, MN 55112 **USA**

Modification 1 January 2023 ADRIA Développement Creac'h Gwen F.29196 Quimper Cedex, France

APPLICABILITY OF METHOD Target organism – Listeria monocytogenes.

Matrixes – (25 g) – smoked salmon, cottage cheese, hot dogs, and deli turkey

GovVal approved Matrixes – (25 g) – liver pâté, raw fermented sausage, deli ham, and stainless steel

MODIFICATION JANUARY 2023 – FDA MLG 8.13 – deli turkey (25 g) FDA BAM – Ch. 10 – cheddar cheese (125 g), stainless steel (4 in x 4 in, sponge)

Performance claims – The study data detected no statistical difference between the iQ-Check *Listeria monocytogenes* II Real-Time PCR method and the reference methods.

SUBMITTING COMPANY Bio-Rad Laboratories 2000 Alfred Nobel Drive Hercules, CA 94547 USA

CATALOG NUMBER 357-8124

REFERENCE METHODS

AOAC International. AOAC Official Method 993.12 – *Listeria monocytogenes* in Milk and Dairy Products – Selective Enrichment and Isolation Method (Final Action 1996) (2)

United States Department of Agriculture, Food Safety and Inspection Service. Microbiology Laboratory Guidebook – Chapter 8.05. Isolation and Identification of *Listeria monocytogenes* from Red Meat, Poultry, Egg and Environmental Samples (3)

United States Food and Drug Administration, Center for Food Safety and Applied Nutrition. Bacteriological Analytical Manual - Chapter 10. *Listeria monocytogenes* (4)

GovVal Extension: Health Canada, Health Products and Food Branch (2010) Compendium of Analytical Methods, MFHPB – 30 (6)

U.S. Food and Drug Administration (2022), FDA Bacteriological Analytical Manual, Chapter 10, Detection of Listeria monocytogenes in Foods and Environmental Samples, and Enumeration of Listeria monocytogenes in Foods, U.S. Department of Agriculture Food Safety Inspection Service (2021) (8)

Laboratory Guidebook, MLG 8.13, Isolation and Identification of Listeria monocytogenes from Red Meat, Poultry, Ready-To-Eat Siluriformes (Fish) and Egg Products, and Environmental Sponges, (9)

ORIGINAL CERTIFICATION DATE	CERTIFICATION RENEWAL RECORD
January 11, 2008	Renewed annually through December 2024.
METHOD MODIFICATION RECORD	SUMMARY OF MODIFICATION
1. December 2013 Level 2	1. Software update
2. GovVal Level 2	 Matrix extension to include liver pâté, raw fermented sausage, deli ham, stainless steel
3. March 2015 Level 2	3. Manufacturing location change to Hercules, CA
4. July 2018 Level 1	4. Software update and manual edits
5. January 2020 Level 1	5. Reformatted inserts.
6. January 2021 Level 1	6. Editorial/clerical changes for clarity.
7. April 2021 Level 1	 Software was updated from Version 3 to Version 4 allowing compatibility with Windows 10.
8. November 2021 Level 1	8. Editorial changes and addition of user information in French, German, Spanish, Portuguese, and Italian.
9. December 2022 Level 1	9. Editorial/clerical changes for clarity.
10. January 2023 Modification 1 Level 3	10. Modification includes:
	a. New enrichment of Listeria Special Broth II.
	b. Shorter enrichment time for Classic Application.
	c. Protocol File, except deli turkey.
	d. Optional use of Bio-Rad Free DNA Removal Solution.
	e. Use of Listeria spp Fast APF.
	f. Alternative confirmation method.
11. January 2023 Modification 2 Level 2	11. Addition of CFX Opus Deepwell, with CFX Manager Software,
	Industrial Diagnostic Edition version 3.1 using Free DNA Removal
	Solution and Fast APF protocols.
12. October 2023 Level 1	12. Editorial/clerical changes to Reference Guide and User Manual.
	12. Eutonaly central changes to reference datae and oser Mandal.
Under this AOAC Performance Tested Methods [™] License Number, 010802	Under this AOAC Performance Tested Methods ^{5M} License Number, 010802 this
this method is distributed by:	method is distributed as:
NONE	NONE
None	

PRINCIPLE OF THE METHOD (1)

The iQ-Check *Listeria monocytogenes* II kit is a test based on gene amplification and detection by real-time polymerase chain reaction, (RTi-PCR). Ready-to-use RTi-PCR reagents contain DNA primers and a DNA probe specific for *L. monocytogenes*, as well as DNA polymerase and nucleotides. PCR is a technique used to generate many copies of target DNA. During the PCR reaction, several cycles of heating and cooling allow DNA denaturation, by heat, followed by primers binding to the target region. The DNA polymerase then uses these primers and deoxynucleotide triphosphates (dNTPs) to extend the DNA, creating copies of the target DNA. These copies, called amplicons, are detected during the amplification by hybridizing specific oligonucleotide fluorescent probes called molecular beacons. These probes are linked to a fluorophore which fluoresces only when hybridized to the target sequence. In the iQ-Check *Listeria monocytogenes* II kits, carboxyfluorescein (FAM) is the fluorophore linked to the probe hybridizing to the *L. monocytogenes* specific DNA sequence. In the absence of target DNA, no fluorescence will be detected, and the sample determined to be negative. As the amount of amplicons increases with each round of amplification, fluorescence intensity also increases. During each PCR cycle, at the annealing step, the real-time PCR system measures this fluorescence and the associated software plots the fluorescence intensity versus number of cycles. This method allows a simple determination of the presence of *L. monocytogenes* in a sample. To monitor for a successful DNA amplification in each reaction tube, a synthetic DNA "internal control" is included in the reaction mix. This control is amplified with a specific probe at the same time as the *L. monocytogenes* target DNA sequence and detected by a second fluorophore.

DISCUSSION OF THE VALIDATION STUDY (1)

Previous studies have demonstrated the sensitivity of PCR methods used in the food safety industry (7). The use of molecular beacon probes in a PCR reaction provides increased specificity by targeting a specific sequence on the genome of the target organism. Since the assay detects specific target DNA, the growth of competitor organisms is not a major factor in the detection limit of the kit. The RTi - PCR system is able to distinguish between target and non-target DNA. A microbiology culture method based on isolation of target organisms on an agar plate can be greatly affected by the growth of competitor organisms using all the nutrients or, at the opposite, by the use of too much selective media. The iQ-Check *Listeria monocytogenes* II method utilizes a proprietary enrichment broth, LSB. This broth was specially formulated to be used with an easy DNA extraction protocol in combination with the iQ-Check *Listeria monocytogenes* II kit. LSB combines ingredients for improved cell resuscitation and a nutritive base. The selective agents included in LSB were optimized to efficiently target competing flora without affecting *Listeria* growth. In addition, the iQ-Check *Listeria monocytogenes* II kit uses a to the low detection limit of the kit (LOD₅₀ ~1 cfu/25 g). Method agreement for the hot dog matrix was 85%. The iQ-Check *Listeria monocytogenes* II kit was able to identify more true positive samples than the reference method. The 3 discrepant samples detected by iQ-Check were confirmed, from the LSB culture, by standard reference method procedures. However, since the samples were unpaired, from two different enrichment broths, a direct comparison of these two results can be misleading. The same is true for the cottage cheese matrix, where there were 2 "discrepant" samples. There was no significant difference between the performance of the iQ-Check and the reference methods for any of the Matrixes tested.

Table 1 - Inclusivity Results (1)			
Strain	Reference	Origin	iQ-Check Result
Listeria monocytogenes	IPL39	Sausage	Positive
Listeria monocytogenes	IPL119	Spinach	Positive
Listeria monocytogenes	IPL121	Neufchatel cheese	Positive
Listeria monocytogenes	IPL123	Mozzarella cheese	Positive
Listeria monocytogenes	IPL124	Perch fillet	Positive
Listeria monocytogenes	IPL130	Ground beef	Positive
Listeria monocytogenes	IPL137	Coulommier raw milk cheese	Positive
Listeria monocytogenes	IPL141	Environmental sample	Positive

Listeria monocytogenes	IPL149	Environmental sample	Positive
Listeria monocytogenes	IPL152	Environmental sample	Positive
Listeria monocytogenes	IPL156	French fries	Positive
Listeria monocytogenes	IPL176	Beef rib steak	Positive
Listeria monocytogenes 1/2	IPL20	Smoked salmon	Positive
Listeria monocytogenes 1/2	IPL25	Chicken	Positive
Listeria monocytogenes 1/2a	IPL5	Smoked salmon	Positive
Listeria monocytogenes 1/2a	IPL6	Pizza	Positive
Listeria monocytogenes 1/2a	IPL7	Munster raw milk cheese	Positive
Listeria monocytogenes 1/2a	IPL9	Munster raw milk cheese	Positive
Listeria monocytogenes 1/2a	IPL10	Potted meat	Positive
Listeria monocytogenes 1/2a	IPL11	Munster raw milk cheese	Positive
Listeria monocytogenes 1/2a	IPL12	Smoked salmon	Positive
Listeria monocytogenes 1/2a	IPL40	Munster raw milk cheese	Positive
Listeria monocytogenes 1/2a	IPL42	Chicken escalope	Positive
Listeria monocytogenes 1/2a	IPL43	Ground beef	Positive
Listeria monocytogenes 1/2a	IPL44	Sausage	Positive
Listeria monocytogenes 1/2a	IPL45	Rabbit meat	Positive
Listeria monocytogenes 1/2a	IPL47	Sauté potatoes	Positive
Listeria monocytogenes 1/2a	IPL116	Fish	Positive
Listeria monocytogenes 1/2a	IPL128	Soybean cattle cake	Positive
Listeria monocytogenes 1/2a	IPL129	Sauté potatoes	Positive
Listeria monocytogenes 1/2b	IPL13	Pig ears	Positive
Listeria monocytogenes 1/2b	IPL37	Maroille raw milk cheese	Positive
Listeria monocytogenes 1/2b	IPL48	Pig tongue	Positive
Listeria monocytogenes 1/2b	IPL49	Chicken liver	Positive
Listeria monocytogenes 1/2b	IPL50	Blood sausage	Positive
Listeria monocytogenes 1/2b	IPL51	Germain raw milk cheese	Positive
Listeria monocytogenes 1/2c	IPL14	Ground beef	Positive
Listeria monocytogenes 1/2c	IPL15	Beef	Positive
Listeria monocytogenes 1/2c	IPL16	Ground beef	Positive
Listeria monocytogenes 1/2c	IPL17	Pork breast	Positive
Listeria monocytogenes 1/2c	IPL18	Munster raw milk cheese	Positive
Listeria monocytogenes 1/2c	IPL28	Surface sponge	Positive
Listeria monocytogenes 1/2c	IPL53	Ground beef	Positive
Listeria monocytogenes 1/2c	IPL54	Beef Bourguignon	Positive
Listeria monocytogenes 1/2c	IPL117	Montbeliard sausage	Positive
Listeria monocytogenes 3a	IPL191	Fishery environment	Positive
Listeria monocytogenes 3a	IPL192	Fishery environment	Positive
Listeria monocytogenes 3b	IPL193	Fishery environment	Positive
Listeria monocytogenes 3b	IPL55	SLCC 2540 (human)	Positive
Listeria monocytogenes 3c	IPL56	SLCC 2479	Positive
Listeria monocytogenes 4b	IPL32	Munster raw milk cheese	Positive
Listeria monocytogenes 4b	IPL58	Salad	Positive
Listeria monocytogenes 4d	IPL60	ATCC 19117 (sheep)	Positive
Listeria monocytogenes 4d	IPL194	Fishery environment	Positive
Listeria monocytogenes 4e	IPL62	Reblochon raw milk cheese	Positive
Listeria monocytogenes 4e	IPL63	Munster raw milk cheese	Positive
Listeria monocytogenes 7	IPL67	SLCC 2482 (human feces)	Positive

ATCC = American Type Culture Collection, USA, IPL = Listeria culture collection, Institut Pasteur de Lille, France, SLCC = Seeliger's Listeria Culture Collection, Würzburg, Germany

Strain	Reference	Origin	iQ-Check Result
Bacillus cereus	IPLBA2	Beet root	Negative
Bacillus coagulans	IPLBA7	Milk product	Negative
Bacillus mycoïdes	IPLBA6	Environment	Negative
Bacillus mycoïdes	IPLBA24	Soil	Negative
Bacillus sphaericus	IPLBA5	Meat product	Negative
Bacillus steaothermophilus	IPLBA4	Milk product	Negative
Candida albicans	IPLLe3	Collection	Negative
Carnobacterium divergens	IPL46	Minced beef	Negative
Carnobacterium gallinarum	IPL47	Ice slush of chicken carcasses	Negative
Carnobacterium piscicola	IPL48	Raw milk	Negative
Citrobacter braakii	IPLCIT86	Pork sausage	Negative
Citrobacter freundii	IPLCIT24	Meat product	Negative
Enterobacter cloacae	IPLENT76	Milk powder	Negative
Enterococcus faecalis	IPLE1	Egg product	Negative
Enterococcus faecalis	IPLE6	ATCC 19433	Negative
Enterococcus faecium	IPLE2	ATCC 3286	Negative
Enterococcus faecium	IPLE7	CIP 54.33 (Canned fish)	Negative
Erysipelothrix rhusiopathiae	IPL49	Spleen of pig with endocarditis	Negative
Escherichia coli	IPLEC20	Tomatoes	Negative

Escherichia coli	IPLEC35	Spinach	Negative
Jonesia dentrificans	IPLL139	CIP 55134T	Negative
Klebsiella pneumoniae	IPLEN63	Celery	Negative
Klebsiella pneumoniae	IPLEN68	Vegetable salad	Negative
Kurthia gibsonii	IPL42	Meat product	Negative
Lactobacillus casei	IPLLb9595	ATCC 9595	Negative
Lactobacillus delbruecki ssp lactis	IPL53	Emmental cheese	Negative
Lactococcus lactis	IPL33	Milk product	Negative
Listeria grayi	IPL190	Frozen French fries	Negative
Listeria grayi	IPL81	ATCC 19120	Negative
Listeria innocua	IPL108	Gorgonzola cheese	Negative
Listeria innocua	IPL113	Smoked halibut	Negative
Listeria innocua	IPL64	Epoisses cheese	Negative
Listeria innocua	IPL65	Epoisses cheese	Negative
Listeria innocua	IPL66	Spinach	Negative
Listeria innocua	IPL72	Boulettes d'Avesnes cheese	Negative
Listeria innocua	IPL78	Cockerel	Negative
Listeria innocua 6a	IPL77	Toulouse sausage	Negative
Listeria innocua 6a	IPL1	ATCC 33090 (cow brain)	Negative
Listeria innocua 6b	IPL2	Ground beef	Negative
Listeria ivanovii 5	IPL161	Ground beef	Negative
Listeria ivanovii 5	IPL153	Environment	Negative
Listeria ivanovii 5	IPL80	Collection	Negative
Listeria ivanovii 5	IPL184	Bird trap	Negative
Listeria ivanovii 5	IPL179	Environmental sample	Negative
Listeria seeligeri	IPL115	Lake water	Negative
Listeria seeligeri 1/2b	IPL84	Ground meat	Negative
Listeria seeligeri 1/2b	IPL83	Ox tongue	Negative
Listeria welshimeri	IPL100	Pâté	Negative
Listeria welshimeri	IPL101	Ham	Negative
Micrococcus spp	IPLM1	Environment	Negative
Propionibacterium freundenreichii	IPL43	Swiss cheese	Negative
Proteus mirabilis	IPLEN45	Poultry	Negative
Rhodococcus equi	IPL32	Meat product	Negative
Rhodococcus equi	IPLR2	Lung abscess of foal	Negative
Rhodotorula rubra	IPLLe1	Pastry	Negative
Salmonella brandenburg	IPLS3	Pâté	Negative
Salmonella typhimurium	IPLS31	Egg product	Negative
Salmonella virchow	IPLS33	Cockle	Negative
Staphylococcus epidermidis	IPLST3	Yogurt	Negative
Staphylococcus epidermidis	IPLST20	Smoked salmon	Negative
Streptococcus bovis	IPLStrE3	Meat product	Negative

ATCC = American Type Culture Collection, USA

CIP = Collection Institut Pasteur, France

IPL = Culture collection, Institut Pasteur de Lille, France

e 3 - Method Compa	rison Results	(1)										
				iQ-Check	LSB culture	Reference	Method			False		False
		MPN/25 g										
Matrix	Level	(95%)	Samples	positive	confirmed	positive	Agreement ^a	X ^{2 b}	Sensitivity ^c	Negative ^d	Specificity ^e	Positive ^f
		< 0.075										
Smoked salmon	Control	(0-0.24)	5	0	0	0	100%	-	-	-	100%	0%
		0.375										
	Low	(0.11 -1.05)	20	10	10	11	95%	0.09	91%	9%	-	-
		< 0.075										
Cottage cheese	Control	(0-0.24)	5	0	0	0	100%	-	-	-	100%	0%
		1.075										
	Low	(0.23-4.5)	20	12	12	10	90%	0.39	120%	0%	-	-
		< 0.075										
Hot dogs	Control	(0-0.24)	5	0	0	0	100%	-	-	-	100%	0%
		1.6										
	Low	(0.43-4.5)	20	10	10	7	85%	0.90	143%	0%	-	-
		< 0.075										
Deli turkey	Control	(0-0.24)	5	0	0	0	100%	-	-	-	100%	0%
		1.075										
(internal)	Low	(0.23-4.5)	20	12	13	12	95%	0.00	108%	0%	-	-
		< 0.075										
Deli turkey	Control	(0-0.24)	5	0	0	0	100%	-	-	-	100%	0%
1		0.375	1	1								
(independent)	Low	(0.11-1.05)	20	8	9	8	95%	0.00	113%	0%	-	-

DISCUSSION OF THE MODIFICATION STUDY GovVal (5)

The use of DNA hybridization probes in a PCR reaction provides increased specificity by targeting a specific sequence on the genome of the target organism. Since the assay is detecting specific target DNA, the growth of competitor organisms is not a major factor in the detection limit of the kit. The PCR system is able to distinguish between target and non-target DNA. A microbiology culture method based on isolation of target organisms on an agar plate can be greatly affected by the growth of competitor organisms using all the nutrients or, at the opposite, by the use of too much selective media. The iQ-Check *Listeria monocytogenes* II method utilizes a proprietary enrichment broth, LSB. This broth was specially formulated to be used with an easy DNA extraction protocol in combination with the iQ-Check *Listeria monocytogenes* II kit. LSB combines ingredients for improved cell resuscitation and a nutritive base. The selective agents included in LSB were optimized to efficiently target competing flora without affecting *Listeria* growth. In addition, the iQ-Check *Listeria* species kit was also tested. Since the DNA extraction is the same for all iQ-Check kits, one set of samples was processed and an aliquot tested by each PCR kit. The results from both kits had 100% agreement.

able 4. Method C	Comparison Resultsv (5)						T				
Matrix	Strain	MPN ^a /25g	N°	iQ-Check <i>Listeria monocytogenes</i> II N ^c Method		м	FHPB-30 Refere	ence Method	dPODc ^g	95% Cl ^h	
				x ^d	PODc ^e	95% CI	x	POD _R ^f	95% CI		
		< 0.075	5	0	0	0.00, 0.44	0	0	0.00, 0.44	0	-0.44, 0.44
Liver paté	L. monocytogenes 1/2a	0.693 (0.357-1.204)	20	10	0.50	0.30, 0.70	10	0.50	0.30, 0.70	0	-0.28, 0.28
		1.386 (0.799-2.2302)	20	15	0.75	0.53, 0.89	13	0.65	0.43, 0.82	0.10	-0.18, 0.36
		< 0.075	5	0	0	0.00, 0.44	0	0	0.00, 0.44	0	-0.44, 0.44
Hot dogs – 1	L. monocytogenes 1/2b plus 10x	0.598 (0.288-1.050)	20	10	0.50	0.30, 0.70	8	0.40	0.22, 0.61	0.10	-0.19, 0.37
	<i>L. innocua</i> 4ab	1.21 (0.693-2.302)	20	12	0.60	0.39, 0.78	14	0.70	0.48, 0.86	-0.10	-0.36, 0.18
		< 0.075	5	0	0	0.00, 0.44	0	0	0.00, 0.44	0	-0.44, 0.44
Raw fermented	L. monocytogenes 3b	0.7975 (0.431-1.386)	20	10	0.50	0.30, 0.70	11	0.55	0.34, 0.74	-0.05	-0.33, 0.24
sausage		1.8975 (1.095-3.288)	20	10	0.50	0.30, 0.70	15	0.75	0.53, 0.89	-0.25	-0.49, 0.05
		< 0.075	5	0	0	0.00, 0.44	0	0	0.00, 0.44	0	-0.44, 0.44
Sliced deli turkey	L. monocytogenes 3c	0.598 (0.288-1.050)	20	18	0.90	0.70, 0.97	15	0.75	0.53, 0.89	0.15	-0.09, 0.38
		1.610 (0.932-2.775)	20	20	1.00	0.84, 1.00	19	0.95	0.76, 1.00	0.05	-0.12, 0.24
		< 0.075	5	0	0	0.00, 0.44	0	0	0.00, 0.44	0	-0.44, 0.44
Sliced deli ham	L. monocytogenes 4b	1.050 (0.598-1.897)	20	13	0.65	0.43, 0.82	13	0.65	0.43, 0.82	0	-0.28, 0.28
		1.610 (0.932-2.775)	20	19	0.95	0.76, 1.00	16	0.80	0.58, 0.92	0.15	-0.07, 0.38
	L. monocytogenes	N/A ^b	5	0	0	0.00, 0.44	0	0	0.00, 0.44	0	-0.44, 0.44
Stainless steel	4d plus 10x E.	N/A	20	9	0.45	0.26, 0.66	11	0.55	0.34, 0.74	-0.10	-0.37, 0.20
Steel	faecalis	N/A	20	13	0.65	0.43, 0.82	12	0.60	0.39, 0.78	0.05	-0.23, 0.32

^aMPN = Most Probable Number is based on the POD of reference method test portions across labs using the AOAC MPN calculator, with 95% confidence interval

^bN/A = Not applicable

^cN = Number of test potions

^dx = Number of positive test portions

^ePOD_c = Confirmed candidate method positive outcomes divided by the total number of trials

^fPOD_R = Confirmed reference method positive outcomes divided by the total number of trials

^gdPOD_C = Difference between the candidate method and reference method POD values

^h95% CI = If the confidence interval of a dPOD does not contain zero, then the difference is statistically significant at the 5% level

				iQ-Check Listeria mo	nocytogenes II Method	MFHPB-30 Method		
Matrix	Strain	MPN ^a /25g	N°	Presumptive Pos.	Confirmed Pos.	Positive	Chi Square ^d	Relative Sensitivity ^e
		< 0.075	5	0	0	0	-	-
Liver paté	L. monocytogenes 1/2a	0.693 (0.357-1.204)	20	10	10	10	0.00	100
		1.386 (0.799-2.2302)	20	15	15	13	0.46	115
		< 0.075	5	0	0	0	-	-
Hot dogs – 1	L. monocytogenes 1/2b plus 10x	0.598 (0.288-1.050)	20	10	10	8	0.39	125
	<i>L. innocua</i> 4ab	1.21 (0.693-2.302)	20	12	12	14	0.43	86
		< 0.075	5	0	0	0	-	-
Raw fermented	L. monocytogenes 3b	0.7975 (0.431-1.386)	20	10	10	11	0.00	91
sausage		1.8975 (1.095-3.288)	20	10	10	15	2.60	67
		< 0.075	5	0	0	0	-	-
Sliced deli turkey	L. monocytogenes 3c	0.598 (0.288-1.050)	20	18	18	15	1.52	120
,		1.610 (0.932-2.775)	20	20	20	19	1.00	105
		< 0.075	5	0	0	0	-	-
Sliced deli ham	L. monocytogenes 4b	1.050 (0.598-1.897)	20	13	13	13	0.00	100
		1.610 (0.932-2.775)	20	19	19	16	2.01	119
	L. monocytogenes	N/A ^b	5	0	0	0	-	-
Stainless steel	4d plus 10x E.	N/A	20	9	9	11	0.39	82
31661	faecalis	N/A	20	13	13	12	0.10	108

^aMPN = Most Probable Number is based on the POD of reference method test portions across labs using the AOAC MPN calculator, with 95% confidence interval

^bN/A = Not applicable

^cN = Number of test portions

^dChi Square = Mantel-Haenszel: $\chi^2 = (n-1)(ad-bc)^2/[(a+b)(a+c)(b+d)(c+d)]$, where n = total number of samples tested by the two methods, a = number of samples confirmed positive by the test method, b = number of samples negative by the test method, c = number of samples positive by the reference method and d = number of samples negative by the reference method

eRelative sensitivity = a/c, where a = number of samples confirmed positive by the test method and c = number of samples positive by the reference method

DISCUSSION OF THE MODIFICATION STUDY APPROVED MODIFICATION 1 JANUARY 2023 (7)

One objective of this modification study was to incorporate a new enrichment (LSB II) with a reduced incubation time of 18-24 h at 37 ± 1°C for deli turkey and cottage cheese, and 16-24 h at 37 ± 1°C for stainless steel.

For the deli turkey matrix at the low level, there was one test portion that showed a negative PCR result using the Fast and Classic APFs while the traditional confirmation procedure concluded to the presence of the *L. monocytogenes* strain in the enriched sample. The lysate was retested twice using each AFP, and negative PCR results were observed for both APF Fast retests and one positive PCR result (Cq: 39.49) and one negative PCR result for the APF Classic. Using the alternative confirmation protocol, only few characteristic *L. monocytogenes* colonies were observed on one of the three selective agar plates tested (RAPID'*L.mono*), indicating a probably low contamination in the enriched sample, at the limit of detection of the candidate method. A second confirmed positive sample, for the low inoculation level, gave a negative PCR result using the APF Classic, the lysate was tested three times and all the results were negative. The Cq value for the APF Fast was relatively high (39.60), once again indicating a very low level of target DNA present. Based on these results, the Classic APF is not recommended for deli turkey. For cottage cheese, the same results were obtained with both the Fast and Classic APF protocols.

For stainless steel, one test portion for the low inoculation level gave negative a PCR result for the APF Classic, while a positive PCR was obtained with the APF Fast (Cq:38.91) with the APF Fast, the lysate was tested twice again and positive result were observed (Cq:36.29,38.24). This sample was confirmed positive. Despite the fact that some discrepancies could be observed during the trials between the two APFs tested and between the PCR results and the confirmation tests, which can be attributed to a very low level of contamination, the iQ-Check *Listeria monocytogenes* II Test kit successfully detected *L. monocytogenes* on the two food matrixes and environmental surface analyzed using the LSB II broth, the FDRS protocol and Easy II extraction protocol whatever the Application protocol File (APF) used for PCR analysis, which were two additional objectives of this study. Using POD analysis, no statistically significant differences were observed between the number of positive samples detected by the candidate method and the reference method.

The final objective was to evaluate an alternative confirmation protocol which included streaking from the test portion primary enrichment to RAPID'*L. mono,* RAPID'*Listeria* and Agar *Listeria* and API *Listeria* for confirmation of typical colonies. For the low level cottage cheese, there were two more positive final results as compared to the number of typical colonies found on RAPID'*Listeria* agar. For this reason, RAPID'*Listeria* is not recommended for use with cottage cheese. The discrepancies could be attributed to the enriched test portion likely at the limit of detection.

In the method comparison study, the iQ-Check *Listeria monocytogenes* II kit demonstrated no statistically significant differences between candidate and reference method results (dPOD_c), or between presumptive and confirmed results (dPOD_c) for both Application Profiles tested. Observed differences between the iQ-Check *Listeria monocytogenes* II kit and the reference method were due to the unpaired nature of the study. Using the LSB II enrichment media in the iQ-Check *Listeria monocytogenes* II method allows to reduce the incubation time.

Table 4. Inclusivity results (7)

No.	Genus	Species	Molecular serotype	Source ^a	Origin	Result ^b
1	Listeria	monocytogenes	ll a	Adria 1011/1410	Frozen broccoli	+
2	Listeria	monocytogenes	VI b	Adria 153	Soft cheese (Munster)	+
3	Listeria	monocytogenes	VI b	Adria1973/2400	Egg and ham pastry (Quiche Lorraine)	+
4	Listeria	monocytogenes	ll a	Adria 38/181	Toulouse sausages	+
5	Listeria	monocytogenes	IV b	Adria 7111/7516	Pâté (Rillettes)	+
6	Listeria	monocytogenes	IV b	Adria 913/1048	Black pudding	+
7	Listeria	monocytogenes	ll a	A00C036	Poultry (guinea)	+
8	Listeria	monocytogenes	La	A00C041	Sausage	+
9	Listeria	monocytogenes	II b	A00C044	Poultry (Duck)	+
10	Listeria	monocytogenes	ll a	A00L097	Milk	+
11	Listeria	monocytogene	es II a	A00M009	Smoked salmon	+
12	Listeria	monocytogene	es II b	Ad253	Semi-hard cheese	+
13	Listeria	monocytogene	es II a	Ad266	Poultry	+
14	Listeria	monocytogene	es IV b	Ad270	Fermented sausage	+
15	Listeria	monocytogene	es II b	Ad273	Cured delicatessen	+
16	Listeria	monocytogene	es II a	Ad274	Ready-to-eat food (Asiatic meal)	+
17	Listeria	monocytogene	es II b	Ad534	Fruits	+
18	Listeria	monocytogene	es II a	Ad548	Environment (Seafood)	+
19	Listeria	monocytogene	es II b	Ad623	Bread crumbs	+
20	Listeria	monocytogene	es II a	Ad665	Raw milk	+
21	Listeria	monocytogene	es VI b	Adria 1972/2399	Puff pastry with mushrooms	+
22	Listeria	monocytogene	es IV b	Adria 2407/3139	Tripes with tomatoes	+
23	Listeria	monocytogene	es II a	Adria 2760/3145	Raw bacon	+

24	Listeria	monocytogenes	II b	Adria 32.183	Croque-Monsieur	+
25	Listeria	monocytogenes	IV b	Adria 5721/6179	Smoked bacon	+
26	Listeria	monocytogenes	ll a	Adria 850/109	RTE food (deli salad with seafood)	+
27	Listeria	monocytogenes	ll a	Adria 877/113	Environmental sample (pastry)	+
28	Listeria	monocytogenes	ll a	A00C014	Sausage	+
29	Listeria	monocytogenes	ll a	A00C022	Merguez	+
30	Listeria	monocytogenes	ll a	A00C024	Sausage	+
31	Listeria	monocytogenes	ll a	A00C039	Sausages	+
32	Listeria	monocytogenes	IV b	A00C040	Cooked delicatessen (Museau)	+
33	Listeria	monocytogenes	IV b	A00C042	Raw sausage	+
34	Listeria	monocytogenes	ll a	A00C043	Smoked Bacon	+
35	Listeria	monocytogenes	ll b	A00C052	RTE food (Osso bucco with turkey)	+
36	Listeria	monocytogenes	ll a	A00C053	Gizzards	+
37	Listeria	monocytogenes	IV b	A00C054	Beef hart	+
38	Listeria	monocytogenes	ll a	A00C055	Raw sausages	+
39	Listeria	monocytogenes	ll a	A00E008	Environmental sample	+
40	Listeria	monocytogenes	ll a	A00E049	Environmental sample (smoked salmon)	+
41	Listeria	monocytogenes	ll a	A00E082	Environmental sample (smoked salmon)	+
42	Listeria	monocytogenes	IV b	A00M032	Smoked salmon	+
43	Listeria	monocytogenes	ll a	A00M045	Smoked salmon	+
44	Listeria	monocytogenes	ll a	A00M088	Smoked salmon	+
45	Listeria	monocytogenes	ll b	Ad235	Poultry	+
46	Listeria	monocytogenes	ll a	Ad260	Semi hard cheese	+
47	Listeria	monocytogenes	ll b	Ad265	Tong	+
48	Listeria	monocytogenes	ll b	Ad267	Dry sausage	+
49	Listeria	monocytogenes	IV b	Ad268	Cured ham	+
50	Listeria	monocytogenes	IV b	Ad272	Fermented sausage	+

^a Ad, Adria, A00 = ADRIA Développement culture collection, Quimper, France.

b"+" indicates the target analyte was detected

Table 5. Exclusivity results (7)

No.	Genus	Species	Source ^a	Origin	Result ^b
1	Listeria	grayi	Ad1198	Smoked salmon	-
2	Listeria	grayi	Ad1443	Pork meat sausages	-
3	Listeria	grayi	Ad1295	Spinach	-
4	Listeria	innocua	Ad658	Gorgonzola	-
5	Listeria	innocua	Ad660	Breadcrumbs	-
6	Listeria	innocua	Ad663	Environment (dairy industry)	-
7	Listeria	ivanovii	Ad466	Raw veal meat	-
8	Listeria	ivanovii	Ad1289	Raw milk cheese	-
9	Listeria	ivanovii	Ad1291	Poultry	-

10	Listeria	seeligeri	Ad649	Cheese	-
11	Listeria	seeligeri	Ad651	Environment	-
12	Listeria	seeligeri	Ad652	Environment (dairy industry)	-
13	Listeria	welshimeri	Ad1276	Environment (Slaughterhouse)	-
14	Listeria	welshimeri	Ad1235	Beef meat	-
15	Listeria	welshimeri	Ad191424	Poultry	-
16	Bacillus	cereus	Ad465	Salmon Terrine	-
17	Bacillus	circulans	Ad760	Vegetables	-
18	Bacillus	coagulans	Ad731	Dairy product	-
19	Bacillus	licheniformis	Ad978	Dairy product	-
20	Bacillus	pumilus	Ad284	Ready-to-eat	-
21	Brochrotrix	campestris	CIP 102920T	Environment	-
22	Carnobacterium	divergens	CIP 101029T	Unknown	-
23	Enterococcus	faecalis	Adria 89L326	Soft cheese (Vacherin)	-
24	Lactobacillus	fermentum	Ad482	Tomatoe juice	-
25	Leuconostoc	citreum	Ad396	Ham	-
26	Micrococcus	luteus	Ad432	Cocktail (beverage)	-
27	Pediococcus	pentosaceus	ATCC 33316	Unknown	-
28	Staphylococcus	aureus	Ad165	Smoked delicatessen	-
29	Staphylococcus	epidermidis	Ad931	Fruits	-
30	Streptococcus	bovis	Adria 92L622	Dairy product	-

^a Ad, Adria, A00 = ADRIA Développement culture collection, Quimper, France; CIP = Collection de l'institut Pasteur, Paris, France; ATCC= American Type Culture Collection, Manassas, VA.

^b"-" indicates the non-target analyte was not detected.

Table 6. iQ-Check Listeria monocytogenes II Results - Presumptive vs. Confirmed (7) cfu/test Presumptive Confirmed Lysis PCR portion or APF^h N^{b} $\mathsf{POD}_{\mathsf{CP}}^\mathsf{d}$ 95% CI 95% CI dPOD_{CP}^f Matrix Strain^a protocol test area PODcc^e 95% CI^g \mathbf{X}^{C} х 0.00, 0 5 0 0.00 0 0.00 0.00, 0.43 0.00 -0.47, 0.47 0.43 FDRSⁱ + 2 0.14 Fast 6 0.30 0.16,0.52 7 0.35 0.18,0.57 -0.05 -0.21,0.11 Easy II [0.03;0.33] 0 0.38, 1.81 Listeria 5 4 0.80 4 0.80 0.38, 1.00 0.00 -0.47, 0.47 [0.85;4.45] 1.00 Deli monocytogenes turkey 0.00, Ad2453 0 5 0 0.00 0 0.00 0.00, 0.43 0.00 -0.47, 0.47 0.43 FDRS + 2 0.11, 0.14 5 7 Classic 0.25 0.35 0.18, 0.57 -0.10 -0.28, 0.08 Easy II [0.03;0.33] 0 0.47 0.38, 1.81 5 4 4 0.80 0.80 0.38, 1.00 0.00 -0.47, 0.47 [0.85;4.45] 1.00 0.00, 0 5 0 0.00 0 0.00 0.00, 0.43 0.00 -0.47, 0.47 0.43 1.57 2 1 1 FDRS + [1.01, 0.95 0.76,1.00 0.95 0.76,1.00 0.00 -0.13,0.13 Listeria Fast 0 9 9 Cottage Easy II 2.26] monocytogenes cheese 9.26 Ad618 0.57, 5 [4.92, 5 5 1.00 1.00 0.57, 1.00 0.00 -0.47, 0.47 1.00 234.22] FDRS + 0.00, 0 0 0.00 0 Classic 5 0.00 0.00, 0.43 0.00 -0.47, 0.47 Easy II 0.43

				1.57 [1.01, 2.26]	2 0	1 9	0.95	0.76,1.00	1 9	0.95	0.76,1.00	0.00	-0.13,0.13
				9.26 [4.92, 234.22]	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	-0.47, 0.47
				0	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.47, 0.47
	Listeria	Easy II	Fast	8.7	2 0	1 3	0.65	0.43,0.82	1 3	0.65	0.43,0.82	0.00	-0.13,0.13
Stainless Steel	monocytogenes Ad651 +			21.6	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	-0.47, 0.47
(4"x4" sponge)	Enterococcus faecalis CNRZ			0	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.47, 0.47
990.80)	1307	Easy II	Classic	8.7	2 0	1 2	0.60	0.39,0.78	1 3	0.65	0.43,0.82	-0.05	-0.21,0.11
				21.6	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	-0.47, 0.47

^aAd= ADRIA Développment culture collection, Quimper, France; CNRZ= Centre National de Recherches zootechniques, Jouy-en-Josas, France.

^bN = Number of test portions.

^cx = Number of positive test portions.

^dPOD_{CP} = Candidate method presumptive positive outcomes divided by the total number of trials.

^ePOD_{cc} = Candidate method confirmed positive outcomes divided by the total number of trials.

^fdPOD_{CP}= Difference between the candidate method presumptive result and candidate method confirmed result POD values.

895% CI = If the confidence interval of a dPOD does not contain zero, then the difference is statistically significant at the 5% level.

^hAPF=Application Protocol File

ⁱFDRS=Free DNA Removal Solution

Table 7. iQ-Check Listeria monocytogenes II Results - Candidate vs. Reference (7)

				cfu/test			Candi	date		Refere	ence		
Matrix	Strain ^a	Lysis protocol	PCR APF ^h	portion or test area	N ^b	xc	PODc ^d	95% CI	х	POD _R ^e	95% CI	dPODc ^f	95% Cl ^g
				0	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.43, 0.43
		FDRS ^j + Easy II	Fast	0.14 [0.03;0.33]	20	6	0.30	0.14,0.52	3	0.15	0.05,0.36	0.15	-0.11,0.39
Deli turkey	Listeria monocytogenes	2009 11		1.81 [0.85;4.45]	5	4	0.80	0.38,1.00	3	0.60	0.23,0.88	0.20	-0.31,0.62
(25g)	Ad2453			0	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.43, 0.43
	FDRS + Easy II	Classic	0.14 [0.03;0.33]	20	5	0.25	0.11,0.47	3	0.15	0.05,0.36	0.10	-0.15,0.34	
		Lusyn		1.81 [0.85;4.45]	5	4	0.80	0.38,1.00	3	0.60	0.23,0.88	0.20	-0.31,0.62
				0	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.10 0.20 0.00 0.20	-0.43, 0.43
		FDRS + Easy II	Fast	1.57 [1.01, 2.26]	20	19	0.95	0.76,1.00	15	0.75	0.53,0.89	0.20	-0.03,0.42
Cottage cheese	Listeria			9.26 [4.92, 234.22]	5	5	1.00	0.57,1.00	5	1.00	0.57,1.00	0.00	-0.43, 0.43
	monocytogenes Ad618			0	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.43, 0.43
(25g)	A0010	FDRS + Easy II	Classic	1.57 [1.01, 2.26]	20	19	0.60	0.39,0.78	15	0.75	0.53,0.89	0.00 0.10 0.20 0.00 0.20 0.00 0.00 0.20	-0.03,0.42
				9.26 [4.92, 234.22]	5	5	0.50	0.34,0.76	5	1.00	0.57,1.00	0.00	-0.43, 0.43
Stainless	Listeria			0	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.43, 0.43
Steel	monocytogenes	Easy II	Fast	8.7	20	13	0.65	0.43,0.82	17	0.85	0.64,0.95	-0.20	-0.44,0.07

(4"x4" Ad651 +			21.6	5	5	1.00	0.57,1.00	4	0.80	0.38,1.00	0.20	-0.28,0.62	
sponge)	Enterococcus faecalis CNRZ			0	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.43, 0.43
	1307	Easy II	Classic	8.7	20	12	0.65	0.43,0.82	17	0.85	0.64,0.95	-0.20	-0.49,0.03
			-	21.6	5	5	1.00	0.57,1.00	4	0.20	0.38,1.00	0.20	-0.28,0.62

^aAd= ADRIA Développement culture collection, Quimper, France ; CNRZ= Centre National de Recherches zootechniques, Jouy-en-Josas, France. ^bN = Number of test portions.

^cx = Number of positive test portions.

^dPOD_c = Candidate method presumptive positive outcomes confirmed positive divided by the total number of trials.

^ePOD_R = Reference method confirmed positive outcomes divided by the total number of trials.

^fdPOD_c= Difference between the confirmed candidate method result and reference method confirmed result POD values.

⁸95% CI = If the confidence interval of a dPOD does not contain zero, then the difference is statistically significant at the 5% level. ^hAPF=Application Protocol File

ⁱFDRS=Free DNA Removal Solution.

Table 8. Alternative Confirmation Results for the iQ-Check L.monocytogenes II Kit for Deli Turkey (7)

L. monocytogenes Ad2453 Low Level O.14 cfu/test portion (0.03, 0.33) MLG 8.13 Sample # Confirmed ^a MLG 8.13 Fast Classic RAPID L. mono Agar Agar Listeria MOX Final Re 1 + ^b + +	Deli Turkey (25 g)												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
Sample #iQ-Check L.monocytogenes II KitConfirmedaMLG 8.13Sample #iQ-Check L.monocytogenes II KitRAPID L. mono AgarRAPID Listeria AgarAgar ListeriaMOXFinal Report 													
Sample #KitRAPID L.RAPID ListeriaAgar ListeriaMOXFinal Report1 $+^{b}$ +++++++2 $-/-/-^{c}$ $-/+/-^{c}$ $+3^{d}$ ++													
Sample #IntRAPID L. mono AgarListeria AgarAgar ListeriaMOXFinal Re1 $+^b$ ++++++2 $-/-/-^c$ $-/+/-^c$ $+3^d$ IntervalIntervalIntervalInterval													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	esult												
2 -/-/- ^c -/+/- ^c +2 ^d													
3 + + + + + + + +													
4 - ^e													
5													
6													
7													
8													
9 + + + + + +													
10													
11 + -/-/- ^c + + + + +													
12													
13													
14													
15 + + + + + +													
16													
17													
18													
19													
20 + + + + + + +													
Total 6/20 6/20 7/20 6/20 7/20 7/20	0												
High Level 1.81 cfu/test portion (0.85, 4.45)													
1 + + + + + +													
2 + + + + + + +													
3													
4 + + + + + + +													
5 + + + + + + +													
Total 4/5 4/5 4/5 4/5 4/5 4/5 4/5	5												
Uninoculated													
1													
2													
3													
4													
5													
Total 0/5 0/5 0/5 0/5 0/5 0/5	5												

^a Agar plate results after streaking from primary enrichment.

^b"+" indicates the target analyte was detected.

^c Three separate PCR tests were performed with Cq values reported.

^d Three typical colonies were found on this plate.

^e"-" indicates the non-target analyte was not detected.

			C	ottage Cheese	(25 g)			
			L. n	nonocytogenes	Ad618			
				Low Level				
			1.57 cf	u/test portion	1.01, 2.26)			
				Confirmed ^a			BAM Ch 1	.0
Sample #		heck ogenes II Kit Classic	RAPID <i>L.</i> mono Agar	RAPID Listeria Agar	Agar Listeria	Agar Listeria	PALCAM	Final Result
1	+b	+	_c	-	-	+	+	+
2	+	+	+	+	+	+	+	+
3	+	+	+	+	+	+	+	+
4	+	+	+	+	+	+	+	+
5	+	+	+	+	+	+	+	+
6	+	+	-	-	+	+	+	+
7	+	+	+	+	+	+	+	+
8	+	+	+ +	+	+	+	+	+
9	+	+	+ +	+	+	+	+	+
10	+	+	+ +	+	+	+	+	+
11	+	+	+	+	+	+	+	+
12	+	+	+	+	+	+	+	+
13	-	-	-	-	-	-	-	-
14	+	+	+	+	+	+	+	+
15	+	+	+	+	+	+	+	+
16	+	+	+	+	+	+	+	+
17	+	+	+	+	+	+	+	+
18	+	+	+	+	+	+	+	+
19	+	+	+	+	+	+	+	+
20	+	+	+	+	+	+	+	+
Total	19/20	19/20	17/20	17/20	18/20	19/20	19/20	19/20
				High Level				
			9.26 cfu,	/test portion (4				
1	+	+	+	+	+	+	+	+
2	+	+	+	+	+	+	+	+
3	+	+	+	+	+	+	+	+
4	+	+	+	+	+	+	+	+
5	+	+	+	+	+	+	+	+
Total	5/5	5/5	5/5	5/5	5/5	5/5	5/5	5/5
				Uninoculate			1 I	
1	-	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-
Total	0/5	0/5	0/5	0/5	0/5	0/5	0/5	0/5

^a Agar plate results after streaking from primary enrichment
 ^b"+" indicates the target analyte was detected.
 ^c"-" indicates the non-target analyte was not detected.

Sample # iQ-Check Fast 1 +b 2 -d 3 + 4 + 5 + 6 - 7 + 8 + 9 + 10 - 11 - 12 + 13 - 14 - 15 + 16 + 17 - 18 + 19 + 20 + Total 13/20	L.monocytogenes II Kit Classic i/+ ^c NA/35.72 - + + + + - + + - - - - - -/+/+ ^e NA/36.39/38.24	La 8.7 cfu	ytogenes Ad651 Dw Level 1/test portion Confirmed ^a RAPID Listeria Agar + - + + + + + + - - + + - - + + - - + + + - + + + - - + + + + - - + + + + + - - + + + + + + + + + + + + +	Agər Listeria + - + + + - - + + - + - - -	Agar Listeria + - + + + + - + + + + + + - -	BAM Ch 1 PALCAM + - + + + + + + + + + +	
Sample # Fast 1 + ^b 2 - ^d 3 + 4 + 5 + 6 - 7 + 8 + 9 + 10 - 11 - 12 + 13 - 14 - 15 + 16 + 17 - 18 + 19 +	Classic i/+ ^c NA/35.72 - + + + + - + + + + - - - - - - - - - - - - -	8.7 cfu RAPID L. mono Agar + - - + + - + + + + + + - - - -	A/test portion Confirmed ^a RAPID Listeria Agar + - + + + + + + + + + - - - - - - - - - - - - -	+ + + + + + + + + + + +	+ + + + + + + + + + + + -	PALCAM + - + + + + - + + + + + + -	Final Resu + - + + + + + + + + + +
Sample # Fast 1 + ^b 2 - ^d 3 + 4 + 5 + 6 - 7 + 8 + 9 + 10 - 11 - 12 + 13 - 14 - 15 + 16 + 17 - 18 + 19 +	Classic i/+ ^c NA/35.72 - + + + + - + + + + - - - - - - - - - - - - -	RAPID L. mono Agar + - + + + + + + + + + - - - -	Confirmed ^a RAPID Listeria Agar + - + + + + + + + + + - - - -	+ + + + + + + + + + + +	+ + + + + + + + + + + + -	PALCAM + - + + + + - + + + + + + -	Final Resu + - + + + + + + + + + +
Sample # Fast 1 + ^b 2 - ^d 3 + 4 + 5 + 6 - 7 + 8 + 9 + 10 - 11 - 12 + 13 - 14 - 15 + 16 + 17 - 18 + 19 +	Classic i/+ ^c NA/35.72 - + + + + - + + + + - - - - - - - - - - - - -	Agar + - + + + - + + + + - - -	RAPID Listeria Agar + - + + + - + + + + + - - -	+ + + + + + + + + + + +	+ + + + + + + + + + + + -	PALCAM + - + + + + - + + + + + + -	Final Resu + - + + + + + + + + +
1 $+^b$ 2 $-^d$ 3 + 4 + 5 + 6 - 7 + 8 + 9 + 10 - 11 - 12 + 13 - 14 - 15 + 16 + 17 - 18 + 19 + 20 +	i/+ ^c NA/35.72 - + + + - - + + + + - - - -/+/+ ^e NA/36.39/38.24	- + - + + + - - + + - - -	- + + + + + + + + + + + + + - -	+ + + + + + + + + + + +	+ + + + + + + + + + + + -	+ + + + + + + + + + + + -	+ - + + + - - + + + +
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NA/35.72 - + + + - - + + + - - - -/+/+ ^e NA/36.39/38.24	- + + - + + + + + + - -	- + + + - + + + + + - -	- + + + - + + + + + + -	- + + + - + + + + + + + -	- + + - + + + + + + -	- + + - - + + + +
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ + - - + + - - -/+/+ ^e NA/36.39/38.24	+ + - + + + + - -	+ + - + + + + - -	+ + - + + + + + -	+ + - + + + + -	+ + + - + + + + + -	+ + + + + + + + + + + + + + + + + + + +
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ + - + + + - - -/+/+ ^e NA/36.39/38.24	+ + - + + + - -	+ - + + + + - -	+ + - + + + -	+ + - + + + -	+ + - + + + + -	+ + + + + + + +
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ - + + - - -/+/+ ^e NA/36.39/38.24	+ - + +	+ - + + - -	+ - + + + -	+ - + + + -	+ - + + + -	+ - + + +
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- + + - - - -/+/+ ^e NA/36.39/38.24	- + + - -	- + + - -	- + + + -	- + + + -	- + + + -	- + + +
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ + - - -/+/+ ^e NA/36.39/38.24	+ +	+ +	+ + + -	+ + + -	+++++	+ + +
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ + - - -/+/+ ^e NA/36.39/38.24	+	+ +	+ + -	+ + -	+ + -	+ +
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ - -/+/+ ^e NA/36.39/38.24	+ - -	+ - -	+ -	+	+ -	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- - -/+/+ ^e NA/36.39/38.24	-	-	-	-	-	
11 - 12 + 13 - 14 - 15 + 16 + 17 - 18 + 19 + 20 +	- -/+/+ ^e NA/36.39/38.24	-	-				-
12 + 13 - 14 - 15 + 16 + 17 - 18 + 19 + 20 +	-/+/+ ^e NA/36.39/38.24			-	-		
13 - 14 - 15 + 16 + 17 - 18 + 19 + 20 +	NA/36.39/38.24	+	+			-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				+	+	+	+
15 + 16 + 17 - 18 + 19 + 20 +	-	-	-	-	-	-	-
16 + 17 - 18 + 19 + 20 +	-	-	-	-	-	-	-
17 - 18 + 19 + 20 +	+	+	+	+	+	+	+
18 + 19 + 20 +	+	+	+	+	+	+	+
19 + 20 +	-	-	-	-	-	-	-
20 +	+	+	+	+	+	+	+
	+	+	+	+	+	+	+
Total 13/20	+	+	+	+	+	+	+
	11/20	13/20	13/20	13/20	13/20	13/20	13/20
		н	igh Level	•	·		
		12.6 cf	u/test portion				
1 +	+	+	+	+	+	+	+
2 +	+	+	+	+	+	+	+
3 +	+	+	+	+	+	+	+
4 +	+	+	+	+	+	+	+
5 +	+	+	+	+	+	+	+
Total 5/5	5/5	5/5	5/5	5/5	5/5	5/5	5/5
		Uni	noculated		•		
1 -	-	-	-	-	-	-	-
2 -	-	-	-	-	-	-	-
3 -	-	-	-	-	-	-	-
4 -	-	-	-	-	-	-	-
5 -	-	-	-	-	-	-	-

^a Agar plate results after streaking from primary enrichment

^b"+" indicates the target analyte was detected.

^c Two separate PCR tests were performed with Cq values reported and "i" = PCR inhibition

d"-" indicates the non-target analyte was not detected.

^d Three separate PCR tests were performed with Cq values reported.

DISCUSSION OF THE MODIFICATION STUDY APPROVED MODIFICATION 2 JANUARY 2023 (10)

The new CFX Opus Deepwell instrument delivers the same performance as the current CFX96 Touch Deep Well instrument but with a more modern design and cloud capabilities. The improved stability of the thermal block ensures a more uniform thermal protocol. The CFX Manager Software, IDE v 3.1 brings the same performance, algorithm, and interpretation as the current CFX Manager Software, IDE v 3.0 with the only change being compatibility to both CFX96 Touch Deep Well and CFX Opus Deepwell instruments. The iQ-Check *L. monocytogenes* II kit gave a false negative for one sample of the deli ham. this is most likely due to the low level of target *Listeria* (0.15 MPN/25 g) in the test portions and the normal distribution of the target DNA and sampling of the test portions. No discrepancies were observed between the CFX96 Touch Deep Well and CFX Opus Deepwell instruments. Any differences observed between the candidate and reference methods are due to tests being conducted under unpaired testing conditions. In the inclusivity and exclusivity evaluations, all inclusivity organisms were correctly identified, and all exclusivity organisms were correctly excluded.

Table 1	14. Inclusivity Re	esults, iQ-Check L. monod	c <mark>ytogenes</mark> II Kit (10)			
No.	Genus	Species	Molecular Subtype	Source ^a	Origin	CFX96 Touch Deep Well Result ^b	CFX Opus Deepwell Result
1	Listeria	monocytogenes	VI b	Ad 153	Soft cheese (Munster)	+	+
2	Listeria	monocytogenes	ll a	Ad 1011/1410	Frozen broccoli	+	+
3	Listeria	monocytogenes	VI b	Ad 1972/2399	Puff pastry with mushrooms	+	+
4	Listeria	monocytogenes	VI b	Ad 1973/2400	Puff pastry egg and ham (Quiche lorraine)	+	+
5	Listeria	monocytogenes	IV b	Ad 2407/3139	Tripes with tomatoes	+	+
6	Listeria	monocytogenes	ll a	Ad 2760/3145	Raw bacon	+	+
7	Listeria	monocytogenes	ll b	Ad 32.183	Croque-Monsieur	+	+
8	Listeria	monocytogenes	ll a	Ad 38/181	Toulouse sausages	+	+
9	Listeria	monocytogenes	IV b	Ad 5721/6179	Smoked bacon	+	+
10	Listeria	monocytogenes	IV b	Ad 7111/7516	Pâté (Rillettes)	+	+
11	Listeria	monocytogenes	ll a	Ad 850/109	RTE food (deli salad with seafood)	+	+
12	Listeria	monocytogenes	ll a	Ad 877/113	Environmental sample (pastry)	+	+
13	Listeria	monocytogenes	IV b	Ad 913/1048	Black pudding	+	+
14	Listeria	monocytogenes	lla	A00C014	Sausage	+	+
15	Listeria	monocytogenes	ll a	A00C022	Merguez	+	+
16	Listeria	monocytogenes	ll a	A00C024	Sausage	+	+
17	Listeria	monocytogenes	ll a	A00C036	Poultry (guinea)	+	+
18	Listeria	monocytogenes	ll a	A00C039	Sausages	+	+
19	Listeria	monocytogenes	IV b	A00C040	Cooked delicatessen (Museau)	+	+
20	Listeria	monocytogenes	La	A00C041	Sausage	+	+
21	Listeria	monocytogenes	IV b	A00C042	Raw sausage	+	+
22	Listeria	monocytogenes	ll a	A00C043	Smoked Bacon	+	+
23	Listeria	monocytogenes	llb	A00C044	Poultry (duck)	+	+
24	Listeria	monocytogenes	ll b	A00C052	RTE food (Osso bucco with turkey)	+	+
25	Listeria	monocytogenes	ll a	A00C053	Gizzards	+	+
26	Listeria	monocytogenes	IV b	A00C054	Beef hart	+	+
27	Listeria	monocytogenes	ll a	A00C055	Raw sausages	+	+
28	Listeria	monocytogenes	ll a	A00E008	Environmental sample	+	+
29	Listeria	monocytogenes	ll a	A00E049	Environmental sample (smoked salmon)	+	+
30	Listeria	monocytogenes	ll a	A00E082	Environmental sample (smoked salmon)	+	+
31	Listeria	monocytogenes	ll a	A00L097	Milk	+	+
32	Listeria	monocytogenes	ll a	A00M009	Smoked salmon	+	+
33	Listeria	monocytogenes	IV b	A00M032	Smoked salmon	+	+
34	Listeria	monocytogenes	ll a	A00M045	Smoked salmon	+	+
35	Listeria	monocytogenes	ll a	A00M088	Smoked salmon	+	+
36	Listeria	monocytogenes	ll b	Ad 235	Poultry	+	+
37	Listeria	monocytogenes	ll b	Ad 253	Hard cheese	+	+
38	Listeria	monocytogenes	ll a	Ad 260	Semi hard cheese	+	+
39	Listeria	monocytogenes	ll b	Ad 265	Tong	+	+
40	Listeria	monocytogenes	ll a	Ad 266	Poultry	+	+
41	Listeria	monocytogenes	ll b	Ad 267	Dry sausage	+	+
42	Listeria	monocytogenes	IV b	Ad 268	Cured ham	+	+
43	Listeria	monocytogenes	IV b	Ad 270	Fermented sausage	+	+
44	Listeria	monocytogenes	IV b	Ad 272	Fermented sausage	+	+
45	Listeria	monocytogenes	ll b	Ad 273	Cured delicatessen	+	+
46	Listeria	monocytogenes	ll a	Ad 274	Ready-to-eat food (Asiatic meal)	+	+
47	Listeria	monocytogenes	II b	Ad 534	Fruits	+	+
48	Listeria	monocytogenes	ll a	Ad 548	Environment (seafood) +		+
49	Listeria	monocytogenes	II b	Ad 623	Bread crumbs	+	+
50	Listeria	monocytogenes	ll a	Ad 665	Raw milk	+	+
		A Développement culture				I	. · ·

^a Ad, Adria, A00 = ADRIA Développement culture collection, Quimper, France

^b"+" indicates the target analyte was detected

Table 19. E	xclusivity Results, iQ-C	Check L. monocytog	enes II Kit (10)			
No.	Genus	Species	Source	Origin	CFX96 Touch Deep Well Result ^a	CFX Opus Deepwell Result ^a
1	Listeria	grayi	Ad ^b 1198	Smoked salmon	-	-
2	Listeria	grayi	Ad 1443	Pork meat sausages	-	-
3	Listeria	grayi	Ad 1295	Spinach	-	-
4	Listeria	innocua	Ad 658	Gorgonzola	-	-
5	Listeria	innocua	Ad 660	Breadcrumbs	-	-
6	Listeria	innocua	Ad 663	Environment (dairy industry)	-	-
7	Listeria	ivanovii	Ad 466	Raw veal meat	-	-
8	Listeria	ivanovii	Ad 1289	Raw milk cheese	-	-
9	Listeria	ivanovii	Ad 1291	Poultry	-	-
10	Listeria	seeligeri	Ad 649	Cheese	-	-
11	Listeria	seeligeri	Ad 651	Environment	-	-
12	Listeria	seeligeri	Ad 652	Environment (dairy industry)	-	-
13	Listeria	welshimeri	Ad 1276	Environment (Slaughterhouse)	-	-
14	Listeria	welshimeri	Ad 1235	Beef meat	-	-
15	Listeria	welshimeri	Ad 191424	Poultry	-	-
16	Bacillus	cereus	Ad 465	Salmon Terrine	-	-
17	Bacillus	circulans	Ad 760	Vegetables	-	-
18	Bacillus	coagulans	Ad 731	Dairy product	-	-
19	Bacillus	licheniformis	Ad 978	Dairy product	-	-
20	Bacillus	pumilus	Ad 284	Ready-to-eat	-	-
21	Brochrotrix	campestris	CIP ^c 102920T	Environment	-	-
22	Carnobacterium	divergens	CIP 101029T	Unknown	-	-
23	Enterococcus	faecalis	Adria ^b 89L326	Soft cheese (Vacherin)	-	-
24	Lactobacillus	fermentum	Ad 482	Tomato juice	-	-
25	Leuconostoc	citreum	Ad 396	Ham	-	-
26	Micrococcus	luteus	Ad 432	Cocktail (beverage)	-	-
27	Pediococcus	pentosaceus	ATCC ^d 33316	Unknown	-	-
28	Staphylococcus	aureus	Ad 165	Smoked delicatessen	-	-
29	Staphylococcus	epidermidis	Ad 931	Fruits	-	-
30	Streptococcus	bovis	Adria 92L622	Dairy product	-	-

^a "-" indicates the target analyte was not detected

^b Ad, Adria = ADRIA Développement culture collection, Quimper, France

^cCIP = Collection de l'institut Pasteur, Paris, France

^d ATCC = American Type Culture Collection, Manassas, VA, United States

Matuin	Strain	MPN ^a /	Nb		Presump	otive	Confirmed		dPOD _{CP} ^f		
Matrix	Strain	Test Portion	N ⁵	Xc	POD _{CP} ^d	95% CI	Х	PODcc ^e	95% CI	apod _{cp} '	95% Cl ^g
Deli ham (25 g)	Listeria	-	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.47, 0.47
CFX96 Touch	monocytogenes Ad	0.15 (0.05, 0.35)	20	6	0.30	0.16,0.52	7	0.35	0.18,0.57	-0.05	-0.21,0.11
Deep Well	2453	1.78 (0.9, 3.5	5	4	0.80	0.38, 1.00	4	0.80	0.38, 1.00	0.00	-0.47, 0.47
Deli ham (25 g)	Listeria	-	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.47, 0.47
CFX Opus	monocytogenes Ad	0.15 (0.05, 0.35)	20	6	0.30	0.16,0.52	7	0.35	0.18,0.57	-0.05	-0.21,0.11
Deepwell	2453	1.78 (0.9, 3.5	5	4	0.80	0.38, 1.00	4	0.80	0.38, 1.00	0.00	-0.47, 0.47

^aMPN = Most Probable Number is calculated using the LCF MPN calculator ver. 2.0 provided by AOAC RI, with 95% confidence interval ^bN = Number of test portions

^cx = Number of positive test portions

^dPOD_{CP} = Candidate method presumptive positive outcomes divided by the total number of trials

^ePOD_{cc} = Candidate method confirmed positive outcomes divided by the total number of trials

^fdPOD_{CP}= Difference between the candidate method presumptive result and candidate method confirmed result POD values

895% CI = If the confidence interval of a dPOD does not contain zero, then the difference is statistically significant at the 5% level

Table 27. Bio-Rad	l iQ-Check <i>L. monocy</i>	togenes II, Candida	te vs.	Refer	ence (Unpa	ired) – POD Res	ults (1	0)			
Matrix	Strain	MPN ^a /	N ^b		Cand	lidate		Refere	ence	dPOD _C f	95% CI ^g
watrix	Strain	Test Portion	1 M	xc	POD _C ^d	95% CI	Χ	POD _R ^e	95% CI	ur OD _C	7570 CI
Deli ham (25 g)	Listeria	-	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.43, 0.43
CFX96 Touch	monocytogenes	0.15 (0.05, 0.35)	20	6	0.30	0.14,0.52	3	0.15	0.05,0.36	0.15	-0.11,0.39
Deep Well	Ad 2453	1.78 (0.9, 3.5)	5	4	0.80	0.38,1.00	3	0.60	0.23,0.88	0.20	-0.31,0.62
Deli ham (25 g)	Listeria	-	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.43, 0.43
CFX Opus	monocytogenes	0.15 (0.05, 0.35)	20	6	0.30	0.14,0.52	3	0.15	0.05,0.36	0.15	-0.11,0.39
Deepwell	Ad 2453	1.78 (0.9, 3.5)	5	4	0.80	0.38,1.00	3	0.60	0.23,0.88	0.20	-0.31,0.62

^aMPN = Most Probable Number is calculated using the LCF MPN calculator ver. 2.0 provided by AOAC RI, with 95% confidence interval

^bN = Number of test portions

 $^{c}x =$ Number of positive test portions

 $^{d}POD_{C}$ = Candidate method confirmed positive outcomes divided by the total number of trials

 $^{e}POD_{R}$ = Reference method confirmed positive outcomes divided by the total number of trials

^fdPOD_c= Difference between the confirmed candidate method result and reference method confirmed result POD values

^g95% CI = If the confidence interval of a dPOD does not contain zero, then the difference is statistically significant at the 5% level

Table 28. Bio-Rad	Table 28. Bio-Rad iQ-Check L. monocytogenes II Kit, CFX Opus Deepwell vs. CFX96 Touch Deep Well–POD Results (10)												
Matrix	Strain	MPN ^a /	NÞ		CFX Opus	Deepwell	С	FX96 Touch D	Deep Well	dPOD _{ot} f	95% Cl ^g		
IVIALITIX	Strain	Test Portion	IN-	Xc	POD _{oc} ^d	95% CI	х	POD τc ^e	95% CI	apod _{ot} ,	95% CI°		
	Listeria	-	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.47, 0.47		
Deli ham (25 g)	monocytogenes	0.15 (0.05, 0.35)	20	6	0.30	0.14,0.52	6	0.30	0.14,0.52	0.00	-0.13, 0.13		
	Ad 2453	1.78 (0.9, 3.5)	5	4	0.80	0.38, 1.00	4	0.80	0.38, 1.00	0.00	-0.47, 0.47		

^aMPN = Most Probable Number is calculated using the LCF MPN calculator ver. 2.0 provided by AOAC RI, with 95% confidence interval

^bN = Number of test portions

^cx = Number of positive test portions

^dPOD_{oc} = CFX Opus Deepwell confirmed positive outcomes divided by the total number of trials

 $^{e}POD_{TC}$ = CFX96 Touch Deep Well confirmed positive outcomes divided by the total number of trials

^fdPOD_{OT}= Difference between the CFX Opus Deepwell confirmed result and CFX96 Touch Deep Well confirmed result POD values

895% CI = If the confidence interval of a dPOD does not contain zero, then the difference is statistically significant at the 5% level

REFERENCES CITED

- 1. Lauer, Wendy, Tourniaire, Jean-Philippe, Sidi, Caroline, Patel, Asmita., Evaluation of the iQ-Check[™] Listeria monocytogenes II Real-Time PCR Test Kit in Select Foods, AOAC Performance Tested MethodsSM certification number 010802.
- 2. Official Methods of Analysis (2000) 17th Ed., AOAC INTERNATIONAL, Gaithersburg, MD, Method 993.12
- Microbiology Laboratory Guidebook (October 1, 2004) U.S. Department of Agriculture, Food Safety and Inspection Service, Office of Public Health Science, Chapter 8.05. Available online at www.fsis.usda.gov/PDF/MLG_8_05.pdf. Accessed May 18, 2007
- Bacteriological Analytical Manual Online (January 2003) 8th Ed., U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Chapter 10. Online at http://www.cfsan.fda.gov/~ebam/bam-10.html. Accessed May 18, 2007
- 5. Lauer, W.F. and Tourniaire, J.P., iQ-Check Listeria monocytogenes II: AOAC Performance Tested MethodsSM 010802 GovVal Validation Comparison to MFHPB-30 for Detection of Listeria in Ready-to-Eat Meats and Stainless Steel.
- 6. Health Canada, Health Products and Food Branch (2010) *Compendium of Analytical Methods*, MFHPB 30, <u>http://www.hc-sc.gc.ca/fn-an/alt_formats/hpfb-</u>dgpsa/pdf/res-rech/mfhpb30-eng.pdf.
- Clark, M., Rannou, M., Quero, F., Validation Study for the Bio-Rad iQ-Check Listeria monocytogenes II Real-Time PCR Method for the Detection of Listeria monocytogenes in Selected Food Matrixes and Environmental Surfaces: Level 3 Modification, AOAC Performance Tested Methods^{5M} certification number 010802. Approved January 2023.
- U.S. Food and Drug administration (2022), FDA Bacteriological Analytical Manual, Chapter 10, Detection of Listeria monocytogenes in Foods and Environmental Samples, and Enumeration of Listeria monocytogenes in Foods, <u>https://www.fda.gov/food/laboratory-methods-food/bam-chapter-10-detection-listeria-monocytogenes-foods-and-environmental-samples-and-enumeration</u> (accessed July 2022)
- U.S. Department of Agriculture Food Safety Inspection Service (2021) Laboratory Guidebook, MLG 8.13, Isolation and Identification of Listeria monocytogenes from Red Meat, Poultry, Ready-To-Eat Siluriformes (Fish) and Egg Products, and Environmental Sponges, https://www.fsis.usda.gov/sites/default/files/media_file/2021-09/MLG-8.13.pdf (accessed July 2022)
- 10. Clark, M., Validation of the Group Modification for the Addition of the CFX Opus Deepwell Real-Time PCR Instrument and CFX Manager Software, IDE v3.1 for: AOAC Performance Tested Methods^{5M} certification number 010802. Modification approved January 9, 2023.